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1 INTRODUCTION

Digitizing handwritten mathematics is costly and error-prone. We target Handwritten Mathematical
Expression Recognition (HMER): converting pen-written expressions into LaTeX. Expressions are
two-dimensional and structural, so a learned approach that couples visual and sequence modeling
is natural. We adopt an encoder—decoder design: a CNN encoder extracts spatial features and a
sequence decoder (LSTM with attention, plus a Transformer variant) generates LaTeX. This ca-
pability can streamline academic workflows and improve accessibility, reducing the gap between
analog input and digital typesetting.
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Figure 1: Overview of the CNN encoder with LSTM/Transformer decoders.

3 BACKGROUND AND RELATED WORK

HMER has been advanced by CROHME benchmarks and attention-based sequence models Influ-
ences include CROHME baselines and rule-based systems; Zhang ef al. (CNN+attention LSTM)
for LaTeX generation; Deng et al. (coarse-to-fine attention); Wu et al. (DenseNet+Transformer);
and Zhong et al. (ViT encoders) We follow this trajectory with a CNN encoder and two decoders
(LSTM/Transformer) trading interpretability for global context.

Mouchere et al. (2016)
2Zhong et al.|(2022); Zhang et al.|(2017); Deng et al.[{(2017); Wu et al.[(2021)
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4 DATA PROCESSING

We rasterize InkML strokes to grayscale PNGs (1x256x256), normalize (mean=0.5, std=0.5), and
tokenize LaTeX with <sos>, <eos>, <pad>, <unk>. Vocab and normalization are derived from
train only; splits are disjoint at the expression level.

5 ARCHITECTURE

We evaluate three models: an SVM baseline, an LSTM-attention decoder, and a Transformer de-
coder.

5.1 BASELINE SVM MODEL

An RBF-kernel SVM on CROHME-derived PNGs with handcrafted features; a rule-based stage
assembles symbols into LaTeX. This provides a transparent, lightweight baseline.

Instructions (condensed).

1. Organize InkML into trainINKML, validINKML, test INKML.
2. Build PNGs + labels: python build.dataset_from_inkml.py —-—-input_dir

3. Train SVM: python svm_improved.py —-—-labels labels.csv

—-—images_dir ... -—-out model.joblib

5.2 LSTM MODEL

Our HMER system maps 1 x256x256 images to tokenized LaTeX via a CNN encoder and attention-
based LSTM decoder.

5.2.1 OVERVIEW & DATA FLOW

Input: rasterize — normalize; tokenize labels with special tokens.
Encoder: CNN extracts spatial features.

Decoder: LSTM with additive (Bahdanau) attention over encoder features.

=

Training: label-smoothed CE, teacher forcing, AdamW, grad clipping; greedy/beam at
inference.

5.2.2 ENCODER (RESNET-18 BACKBONE)

Truncated ResNet-18 (pretrained) — ~512x 8 x 8 feature map; flatten to L=64 cells; project 512—
dene=512 (1x1 conv/linear). BatchNorm retained; optional spatial dropout (p=0.1).

5.2.3 DECODER (LSTM + BAHDANAU ATTENTION)

Embedding d.,,;,=256; 1-2 layer LSTM d4..=512 (dropout 0.3). Additive attention
eri=v ' tanh(Wphy + Wys; + b), ay=softmax(e;.), c;= > ot8i. Output: [hy;¢;] — linear
— softmax; init from mean-pooled encoder (tanh).

5.2.4 TRAINING AND OBJECTIVE SCHEDULE

Label-smoothed CE (¢=0.1), ignore <pad>; TF decays 1.0—0.6. AdamW (LR 1-3x 1079, weight
decay 1074, clip 1.0; padded batches; AMP on CUDA. Light affine/perspective augmentation for
robustness.

5.2.5 INFERENCE

Greedy for ablations; beam (k=3-5) for higher exact match.
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5.3 TRANSFORMER DECODER

5.3.1 OVERVIEW & DATA FLOW

We reuse the ResNet-18 encoder to produce a 512x8x 8 map, flatten to S € RO4%dene wwith depe =512,
and decode LaTeX with a causal Transformer. Token embeddings (dim doge; = 512) receive learned
positional encodings; encoder features are projected to dogel for cross-attention.

5.3.2 DECODER (SELF + CROSS ATTENTION)

Each of N € {3,4} decoder layers applies: (i) masked multi-head self-attention over previous
outputs, (ii) cross-attention over S, and (iii) a feed-forward block (GeLU) with residuals and Layer-
Norm. With queries @, keys K, values V,

QWR(EWH)T
N

Self-attention uses a causal mask; cross-attention takes () from the token stream and K, V from S.

head; = softmax( ) VWY, MHA = Concat(head,, ..., head;,)W©.

5.3.3 TRAINING AND OBJECTIVE

Label-smoothed cross-entropy (¢ = 0.1) with <pad> ignored; AdamW (Ir 1x10~* with cosine
decay), weight decay 10~#, dropout 0.1, grad clip 1.0, batch padding with length masks, AMP on
CUDA. Teacher forcing is implicit via the causal mask (all positions trained in parallel).

5.3.4 INFERENCE

Greedy decoding for ablations; beam search (k = 3-5) for exactness (length penalty « € [0.2, 0.6]
optional). Cross-attention maps are exported for qualitative analysis; we report EM/BLEU as for
LSTM.

6 QUANTITATIVE RESULTS

6.1 SVM BASELINE RESULTS

Table 1: SVM Classifier Performance Analysis for Mathematical Symbols and Characters
Metric Value
Accuracy 0.360

Macro Fl-score 0.299
Weighted Fl-score  0.434

Per-class F1 spans from < 0.1 (rare/visually similar symbols) to ~0.9 (distinct digits/letters), ex-
plaining the macro vs. weighted F1 gap in Table[I]

6.2 LSTM DECODER BASELINE RESULTS

BLEU rises 0.417—0.655 while CE plateaus ~1.4—1.5, consistent with label smoothing and a large
vocab: local token calibration saturates as n-gram agreement keeps improving.

6.3 TRANSFORMER DECODER BASELINE RESULTS

Greedy vs. beam. On the same split, greedy yields BLEU 0.683/EM 0.000, while beam (k=5,
a=0.4) lifts BLEU to 0.696 and EM to 0.012. Compared to LSTM, the Transformer attains slightly
higher BLEU on longer expressions but exhibits similar EM brittleness under greedy decoding.
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Table 2: Validation metrics by epoch (1-8) for LSTM
Epoch Train Loss Val BLEU Val EM

1 2.053 0.417 0.000
2 1.534 0.529 0.000
3 1.430 0.580 0.000
4 1.422 0.610 0.000
5 1.444 0.627 0.000
6 1.500 0.635 0.000
7 1.539 0.646 0.000
8 1.516 0.655 0.000

Table 3: Validation metrics by epoch (1-8) for the Transformer decoder (greedy).
Epoch Train Loss Val BLEU Val EM

1 2.218 0.438 0.000
2 1.894 0.552 0.000
3 1.743 0.603 0.000
4 1.691 0.629 0.000
5 1.658 0.651 0.000
6 1.645 0.667 0.000
7 1.624 0.677 0.000
8 1.612 0.683 0.000

Table 4: Transformer OOD robustness (validation split; severity ladder). BLEU* denotes a BLEU-
like F1 proxy for short outputs.

Severity EM {1 BLEU/BLEU*{ CER| Empty frac|

Identity ~ 0.000 0.683 0.362 0.02
Tiny 0.002 0.641 0.389 0.04
Mild 0.001 0.524 0.468 0.09
Strong 0.000 0.0361 0.705 0.33

" BLEU* used due to many short/empty predictions under strong shift.
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F1-Scores of SVM Classifier Across Mathematical Symbols and Characters
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Figure 2: Per-class F1 scores of the SVM across symbols/characters.
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Figure 3: Validation grid with last-step attention overlays.

7 QUALITATIVE RESULTS

7.1 SVM BASELINE RESULTS

Low-support classes correlate with low F1, and visually similar symbols (e.g., 1 vs. !) are frequently

confused, aligning with the macro<weighted F1 gap.

7.2 LSTM DECODER BASELINE RESULTS

Attention rollouts show peaky, left-to-right reading; tall operators attract longer focus. Strengths:

clean decoding for short/linear expressions; coherent local transitions. Weaknesses:

grouping/syntax—\frac{}{}, \sqgrt{}, limits; occasional partial control words and early

<eos>.
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Figure 4: Loss curve for the LSTM decoder.
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Figure 5: Class support distribution in the SVM validation set.

Under strong affine+perspective+blur, EM collapses and a BLEU-like proxy is near zero, indicating
distribution-shift sensitivity rather than training instability.

In-distribution strips show a thin, mostly monotonic ridge (stable reading); near operators it widen-
s/oscillates where braces/scopes often fail. OOD strips are diffuse/fragmented.

Entropy dips align with confident, correct tokens; spikes mark uncertainty (brace/scoping errors or
early <eos>). This signal can gate beam search or abstention.

7.3 TRANSFORMER DECODER RESULTS

Cross-attention maps show a less strictly monotonic reading path than the LSTM: the decoder often
forms two—three peaky regions (operator and operand) per step, enabling look-ahead on long/nested
expressions. Strengths: better token ordering on long formulas (sums/integrals with limits), fewer
local hesitations, and improved consistency across repeated motifs. Weaknesses: occasional over-
generation (duplicate control tokens), length bias without a penalty, and brace placement errors sim-
ilar to LSTM under perturbations. Under OOD, cross-attention diffuses and revisits early regions,
raising empty/short decodes; entropy rises at operator boundaries, mirroring BLEU/EM drops.
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Figure 6: SVM performance summary.

Stress (medium): {'exact_match': 0.8, 'bleu': ©.811375360413756364, 'n': 1600}

Wrote: ./runs/crohme23 lstm/ood medium_grid.png

Figure 7: OOD stress test (identity/tiny/mild/strong).

8 EVALUATION ON NEW DATA

8.1 LSTM DECODER RESULTS

8.1.1 HOW WE OBTAINED AND TESTED ON UNSEEN DATA
* Fixed train/val/test splits; vocab/norm from train only; selection on val.

* OOD ladder: Identity, Tiny/Mild  (small affine/perspective), Strong
(affine+perspective+blur).

* Metrics: EM, BLEU (F1 proxy under strong OOD); greedy by default.

8.1.2 PERFORMANCE ON UNSEEN DATA AND COMPARISON TO EXPECTATIONS

* In-distribution test BLEU improved across epochs (e.g., 0.403 —0.672) with EM near zero
(~0.007), matching expectations for syntax-sensitive LaTeX.

* Strong OOD degraded sharply (e.g., EM = 0, proxy ~ 0.026 on n =z 16k), consistent with
attention diffusion and early <eos>.

8.1.3 EFFORTS TO ENSURE GENERALIZABILITY

Strict split discipline; validation-based checkpointing; fixed seeds; label smoothing, clipping, and
light augmentation for stable training; attention diagnostics (strip/entropy) to verify interpretable
behavior.

8.1.4 CHALLENGES AND HOW THEY WERE ADDRESSED

Syntax brittleness: scheduled TF and label smoothing; beam (k=3-5) in demos. Shift sensitiv-
ity: match evaluation with tiny/mild augmentation during fine-tune. Long/nested expressions: use
diagnostics to trigger safer decoding.

Overall, the decoder reads locally well but needs stronger syntax handling and shift robustness;
augmentation-matched fine-tuning and beam search are effective next steps.

8.2 TRANSFORMER DECODER RESULTS

8.2.1 HOW WE OBTAINED AND TESTED ON UNSEEN DATA

Same strict protocol as LSTM: vocab/norm from train only; no test peeking. For robustness, apply
the severity ladder (Identity, Tiny/Mild, Strong) to the unseen test split.

8.2.2 PERFORMANCE ON UNSEEN DATA AND COMPARISON TO EXPECTATIONS

On the unseen test set (greedy), BLEU rises from 0.421 at epoch 1 to 0.695 at epoch 8, EM remains
0.006. With beam (k=5, «=0.4) we observe BLEU 0.708 and EM 0.019. This exceeds the LSTM’s
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Figure 8: Alignment strip: time (rows) X spatial index (columns).
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Figure 9: Attention entropy over decoding steps (max In 64~4.16).

BLEU on long expressions, consistent with global token self-attention. Under strong OOD, perfor-
mance degrades: EM = 0.001, BLEU-like proxy ~ 0.031 on n =~ 16k stressed samples, driven by
attention dispersion and early <eos>.

8.2.3 EFFORTS TO ENSURE GENERALIZABILITY

Dropout 0.1, label smoothing (¢ = 0.1), AdamW with cosine Ir decay, and grad clipping (1.0).
Checkpoints selected by validation BLEU. Cross-attention maps and token entropies confirm stable
reading rather than overfitting.

8.2.4 CHALLENGES AND HOW THEY WERE ADDRESSED

Length bias and occasional over-generation are mitigated with a small beam and length penalty; a
syntax-aware reranker (brace balance) helps exactness. Robustness gaps stem from augmentation/e-
valuation mismatch; a short fine-tune with Tiny/Mild transforms narrows the OOD drop. Syntax
brittleness persists (EM sensitivity), so beam decoding is recommended for deployment-style scor-
ing.

9 DISCUSSION

The LSTM-attention decoder learns in-distribution structure: BLEU rises (to ~ 0.65) with a peaky,
left-to-right attention pattern, explaining gains despite a CE plateau. EM remains near zero because
LaTeX is brittle—single-token syntax errors nullify the whole string. Under stronger geometric/blur
shifts than seen in training, attention diffuses, early <eos> increases, and outputs degrade. Two
key observations: EM can stay flat while BLEU rises (many “almost right” predictions), and at-



University of Toronto: APS360 Final Report — Group 36

tention diagnostics are predictive—thin, forward ridges with low entropy precede correct tokens;
widened/oscillatory bands and entropy spikes precede brace/scoping errors.

The Transformer matches LSTM on easy, short expressions and surpasses it on longer, nested for-
mulas (BLEU ~0.69-0.71 with beam) due to stronger global token context, but shares EM brittle-
ness under greedy decoding. OOD sensitivity is comparable: cross-attention becomes diffuse, emp-
ty/short decodes increase, and a BLEU-like proxy falls sharply under strong shift. Practical remedies
are targeted and low-cost for both decoders: decode with a small beam (k=3-5) with light length
penalty, apply a syntax-aware reranker (brace balance), and fine-tune with evaluation-matched
Tiny/Mild augmentation to anchor attention under shift. Given HMER’s difficulty (2D— 1D map-
ping, long dependencies, unforgiving syntax, domain shift), these steps offer a credible path to
improved exact-match and robustness without architectural changes.

10 ETHICAL CONSIDERATIONS

Risk of misinterpretation. Small LaTeX errors can materially change meaning (e.g., a missing
brace in \frac{}{} or scope shifts in \sgrt { }). Because exact-match is brittle and users may
over-trust a cleanly typeset output, the system should surface calibrated confidence, highlight un-
certain tokens, and provide a one-click way to compare the model’s string against an editable draft.

Automation bias and accountability. In instructional or assessment settings, users may defer to
model output even when it contradicts intent (automation bias). We recommend explicit Ul cues that
the system is assistive, not authoritative; logs of edits for auditability; and clear ownership policies
for errors propagated into downstream documents.

Dataset limitations and fairness. CROHME is limited in size, token diversity, and writer demo-
graphics (devices, scripts, stroke habits), risking representation bias and uneven performance across
handwriting stylesE] Symbols with low support or culturally specific glyph variants may suffer dis-
proportionately. Reporting macro and per-class metrics alongside weighted scores, and testing on
unseen writers/devices, are minimal fairness practices.

Privacy and licensing. If user-provided notes are processed, images may contain personally identi-
fiable content (names, IDs). Storage and sharing must follow consent and data minimization; train-
ing on third-party materials requires license review and, when possible, hashing/redaction pipelines
to prevent inadvertent memorization.

Security and adversarial inputs. Deliberate perturbations (strong blur/warps) can elicit plausible
but wrong LaTeX. Deployment should include input sanity checks, abstention on high-entropy/low-
likelihood decodes, and provenance tags on exported LaTeX to discourage unvetted reuse.

Mitigation. Use (i) token- and sequence-level confidence with thresholds for abstain/flag; (ii)
human-in-the-loop verification for low-confidence cases; (iii) syntax-aware constrained decoding
(brace/parenthesis balancing); (iv) evaluation on broader corpora (e.g., im2latex-100k, MathWrit-
ing) and writer/device splits; (v) documentation (model card, known failure modes) so users under-
stand scope and limitations.

Dataset limitations. CROHME is limited in size/writers/tokens (cf. im2latex-100k, MathWriting),
risking representation biasE]

Mitigation. Use uncertainty indicators or human-in-the-loop review; consider larger/more diverse
datasets; communicate prototype limits.

11 PROJECT DIFFICULTY

HMER is hard: mapping 2D layout to a 1D string with long-range dependencies; LaTeX’s strict syn-
tax; handwriting/scan shift. Our models demonstrate feasibility (steady BLEU gains, interpretable
attention) but exact-match and robustness remain open. For practical use, we target beam decoding
and augmentation-matched fine-tuning to raise EM without architectural changes.

3Schmitt-Koopmann et al.|(2024)); Heska| (2021); |Gervais et al.| (2024)
4Schmitt-Koopmann et al.|(2024)); Heska| (2021); |Gervais et al.| (2024)
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